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MARIO GARRIDO  

 Associate Professor at ES, ISY 

 PhD in Electrical Engineering (Spain). 

 

 Research background: 

 Optimized implementation of signal processing algorithms. 

 Transforms (FFT, STFT,…), statistical operations 

(regressions, median filter,…). 

 Data management (matrix transposition, interleavers,…).  

 Hardware designer (FPGAs, ASICs,…). 
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A STORY ABOUT GPUs  
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< 2011  

Mainly FFTs on FPGAs. 

Hundreds of papers in the topic since the 70’s. 

Is not everything done??? 

 

OPTIMIZE 

OPTIMIZE 

OPTIMIZE 



5 

DFT / FFT  

 Discrete Fourier Transform / Fast Fourier Transform. 

 The most widely used algorithm in signal processing  

- Audio and Image Processing.           - 3G, 4G. 

- Medical applications: EEG, ECG.     - ADSL. 
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…,2011,…  

 FFT      FPGA    FFT     FFT    FPGA    FPGA     FFT   FPGA 

FPGA    FFT     FPGA     FFT     FFT     FPGA      FPGA   FFT…  

I should do something new!! 

What about GPUs?…Shouldn’t it be the same… 
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FPGA vs GPU  

FPGA GPU 

Altera Cyclone II NVIDIA Fermi 
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…,2011,…  

 Started Master Thesis (Sreehari Ambuluri): FFTs on GPUs. 

 Read articles and a book on GPUs. 

 Asked Ingemar, Jens, Gabriel. 
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…,2012,…  

 

Finish the Master Thesis. 

 

 

The work is good.  

Why not to improve it and 

publish a paper?  

 

 

Asked Ingemar, Jens and 

Gabriel for collaboration. 
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…,2013,…  
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…,2013  
BEST PAPER AWARD 
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NVIDIA  

NVIDIA WE 
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LEVEL OF ABSTRACTION  

The compiler decides We decide 

 

 

 

 

 

 

 

COMPILATION 

 

 

COMPILATION 

 

DESCRIPTION 
 

OPTIMIZATION 
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High level of abstraction Low level of abstraction 
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ABSTRACTION vs PERFORMANCE  

 z = 15 * x; 

 z = (x<<3)+(x<<2)+(x<<1) +x; 

 z = (x<<4)-x; 

x z
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UNDERSTANDING GPUs  

1.- The performance is related to the computation time. The lower 

the computation time, the higher the performance. Try to simplify 

the operations in the algorithm. 

2.- Transactions to global memory very expensive. Try to avoid or 

minimize. Try to use shared memory. 

3.- Threads must be synchronized if we want to share information 

among them. Unless they are in the same warp. Try to reduce the 

number of synchronization points. 

4.- We have to calculate the index of the data processed by each 

thread. Try to minimize the number of index calculations. 

5.- Threads process data in parallel and the synchronization is not 

possible until all the threads have finished the calculations. Balance 

the load among thread. 
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1. SIMPIFY THE ALGORITHM  
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USE RADIX-22 



2. USE SHARED MEMORY  

18 



3. REDUCE SYNC. POINTS  
2-word group 4-word group 

USE WORD GROUPS 
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4. REDUCE INDEX CALCULATIONS  

USE CONSTANT GEOMETRY 

Conventional flow graph Constant Geometry 
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5. BALANCE LOAD AMONG THREADS  

USE SCHEDULING 

Unbalanced scheduling Balanced scheduling 
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CONCLUSIONS  
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 Optimization: 

- Depends on the details and the level of abstraction. 

- Requires to understand in-depth what you are doing. 

 

 Teamwork makes a difference. 

 

 GPUs are fun. 
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